You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

390 lines
14 KiB

---
title: "Untitled"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## R Markdown
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.
When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
```{r cars}
oi<-fst::read.fst("./data/open_items.fst")
# oi %>% mutate(spread=ifelse(spread=="Only less than 5", "Only less than 5 yrs",
# ifelse(spread==" Only more than 5","Only more than 5 yrs",spread))) %>% fst::write.fst("./data/open_items.fst")
id<-read.csv("./data/id.csv", sep=";", header=F)
library(dplyr)
indi<-id %>%
filter(V3=="Identiteitsbewijs") %>%
select(V2,V4)
orgs<-id |> dplyr::filter(V3=="KVK – Chamber of Commerce") |> unique()
disorgs<-read.csv("./data/diorg.csv") |> unique()
arch<-read.csv("./data/Arch.csv")
dead.indi<-arch %>% filter(!is.na(Datum.Overlijden.Nr.)) %>% select(c(Id.Nummer,Datum.Overlijden.Nr.)) %>% mutate(e.status="Passed", type="indi")%>% mutate(Id.Nummer=as.character(Id.Nummer))
left.indi<-arch %>% filter(!is.na(Datum.Vertrek.Uit.Curacao.Nr.)) %>% select(Id.Nummer)%>% mutate(e.status="Left", type="indi") %>% mutate(Id.Nummer=as.character(Id.Nummer))
left.indi<-indi %>% unique() %>% inner_join(left.indi, by=c("V4"="Id.Nummer")) %>% rename(business_partner=V2) %>%
select(business_partner, e.status, type) %>%
mutate(Year=c(0)) %>%
select(business_partner, e.status, Year, type)
dead.indi<-indi %>% unique() %>% inner_join(dead.indi, by=c("V4"="Id.Nummer")) %>% rename(business_partner=V2) %>%
mutate(Year=c(0)) %>%
select(business_partner, e.status, Year, type)
disc<-read.csv("./data/coc.csv") %>% unique() %>% select(-X) %>% mutate(Year=ifelse(is.na(Year),0,Year), type=c("org")) %>%
rename(business_partner=BPC, e.status=Status) %>%
group_by(business_partner, e.status) %>%
slice_max(order_by = Year,n=1) %>% select(-Name) %>% mutate(business_partner=as.character(business_partner))
dead.org<-fst::read.fst("./data/dead.fst") %>% select(V2) %>% rename(business_partner=V2)%>% mutate(e.status="Discontinued", type="org") %>% select(business_partner, e.status, type) %>% mutate(Year=c(0))
disc.org<-rbind(disc,dead.org) %>% group_by(business_partner) %>% mutate(count=n()) %>%
group_by(business_partner) %>%
slice_max(order_by = Year,n=1) %>%
mutate(count=n()) %>%
arrange(desc(count), business_partner) %>%
mutate(rown=row_number()) %>%
slice_max(order_by = rown,n=1) %>% ungroup() %>% select(-c(count,rown))
ct<-rbind(disc.org,left.indi,dead.indi)
oi<-oi %>% select(-c(e.status)) %>%
left_join(ct, by="business_partner") %>%
mutate(e.status=ifelse(is.na(e.status) | e.status=="No results","active",e.status)) %>% select(-c(type))
dunn<-fst::read.fst("./data/dunning.fst")
last.dunn<-dunn %>%
group_by(DUNN_GPART, DUNN_VKONT) %>%
filter(DUNN_DATE==max(DUNN_DATE))%>%
mutate(DUNN_GPART=as.character(DUNN_GPART))
no.cont.dunn<-last.dunn %>%
filter(is.na(DUNN_VKONT)) %>%
mutate(DUNN_GPART=as.character(DUNN_GPART)) %>%
group_by(DUNN_GPART) %>%
filter(DUNN_DATE==max(DUNN_DATE)) %>% # To find out the last dunning
select(DUNN_GPART, DUNN_VKONT, DUNN_BILL_DOC, DUNN_ACTIVITY, DUNN_BILL_DOC, DUNN_DATE) %>%
unique() %>% mutate(DUNN_VKONT=as.character(DUNN_VKONT))
cont.dunn<-last.dunn %>%
filter(!is.na(DUNN_VKONT)) %>%
mutate(DUNN_VKONT=as.character(DUNN_VKONT)) %>%
group_by(DUNN_VKONT) %>%
filter(DUNN_BILL_DOC==max(DUNN_BILL_DOC)) %>% # To find out the last dunning
select(DUNN_GPART, DUNN_VKONT, DUNN_BILL_DOC, DUNN_ACTIVITY, DUNN_BILL_DOC,DUNN_DATE) %>%
unique() # Because there are several dunnings on same date
dunn.list.to.use<-
rbind(no.cont.dunn, cont.dunn) %>%
group_by(DUNN_GPART) %>%
filter(DUNN_DATE==max(DUNN_DATE)) %>%
select(DUNN_GPART, DUNN_VKONT, DUNN_DATE) %>%
unique()
dunn.list.to.use.nocont<-dunn.list.to.use %>% filter(is.na(DUNN_VKONT))
dunn.list.to.use.cont<-dunn.list.to.use %>% filter(!is.na(DUNN_VKONT))
oi<-
oi %>%
left_join(dunn.list.to.use.cont, by=c("contract_account"="DUNN_VKONT")) %>%
left_join(dunn.list.to.use.nocont, by=c("business_partner"="DUNN_GPART")) %>%
mutate(
dunn_status= case_when(
is.na(DUNN_DATE.x) & is.na(DUNN_DATE.y) ~ "No Dunning",
is.na(DUNN_DATE.x) & (due_date>DUNN_DATE.y) ~ "Dunned in Past",
is.na(DUNN_DATE.y) & (due_date>DUNN_DATE.x) ~ "Dunned in Past",
TRUE ~ "Dunned"
)
) %>%
select(-c(DUNN_GPART, DUNN_DATE.x,DUNN_VKONT,DUNN_DATE.y))
govtnow<-read.csv("./data/govtnow.csv") |> dplyr::select(1:2) |> dplyr::mutate(business_partner=as.character(business_partner))
noi<-oi |>
dplyr::inner_join(govtnow, by="business_partner") |>
dplyr::mutate(govt.status=
dplyr::case_when(
contract_type=="Government" & !is.na(Name) ~ "Govt in both",
contract_type=="Own" & !is.na(Name) ~ "Own in SAP govt in list",
contract_type=="Street Light" & !is.na(Name) ~ "Street Light in SAP govt in list",
contract_type=="Government" & is.na(Name) ~ "Govt in SAP not in list",
contract_type=="Own" & is.na(Name) ~ "Own in SAP not in list",
contract_type=="Street Light" & is.na(Name) ~ "Street Light in SAP not in list",
contract_type=="Commercial" & !is.na(Name) ~ "Commercial in SAP govt in list",
contract_type=="Residential" & !is.na(Name) ~ "Residential in SAP govt in list",
contract_type=="Industrial" & !is.na(Name) ~ "Industrial in SAP govt in list",
contract_type=="Commercial" & is.na(Name) ~ "Commercial in SAP not in list",
contract_type=="Residential" & is.na(Name) ~ "Residential in SAP not in list",
contract_type=="Industrial" & is.na(Name) ~ "Industrial in SAP not in list"
)
)
noi |>
dplyr::select(business_partner, contract_account, contract_type,govt.status) |> write.csv("")
oi1<-oi |>
dplyr::left_join(govtnow, by="business_partner") |>
dplyr::mutate(new_contract_type=
dplyr::case_when(
contract_type=="Government" & !is.na(Name) ~ "Government",
contract_type=="Own" & !is.na(Name) ~ "Own",
contract_type=="Street Light" & !is.na(Name) ~ "Government",
contract_type=="Government" & is.na(Name) ~ "Government",
contract_type=="Own" & is.na(Name) ~ "Own",
contract_type=="Street Light" & is.na(Name) ~ "Government",
contract_type=="Commercial" & !is.na(Name) ~ "Government",
contract_type=="Residential" & !is.na(Name) ~ "Government",
contract_type=="Industrial" & !is.na(Name) ~ "Government",
contract_type=="Commercial" & is.na(Name) ~ "Commercial",
contract_type=="Residential" & is.na(Name) ~ "Residential",
contract_type=="Industrial" & is.na(Name) ~ "Industrial"
)
)
fst::write.fst(oi1,"./data/open_items.fst")
rm(noi)
disc
```
```{r}
noi |> dplyr::filter(govt.status=="Commercial in SAP govt in list")
unique(oi1$new_contract_type)
unique(oi$o.type)
unique(oi$contract_type)
oi1 |>
dplyr::filter(new_contract_type=="Own") |>
dplyr::filter(status.x=="Only Active") |>
group_by(business_partner,contract_account, negative) |>
summarize(amount=sum(amount)) |>
pivot_wider(names_from=negative, values_from=amount) |>
tfrnma()
tfrnma<-function(dat){
if("TRUE" %in% colnames(dat)){
dat<-dat |> rename(credits=`TRUE`)
}
if("FALSE" %in% colnames(dat)){
dat<-dat |> rename(credits=`FALSE`)
}
dat
}
```
```{r}
oi |>
dplyr::filter(documen_desc=="Installments")
```
```{r}
oi
library(lubridate)
dead.indi.wt.date<-arch %>% filter(!is.na(Datum.Overlijden.Nr.)) %>% select(c(Id.Nummer,Datum.Overlijden.Nr.)) %>% mutate(e.status="Passed", type="indi")%>% mutate(Id.Nummer=as.character(Id.Nummer)) %>%
mutate(Datum.Overlijden.Nr.=ymd(Datum.Overlijden.Nr.))
dead.indi.wt.date[is.na(dead.indi.wt.date$Datum.Overlijden.Nr.),]$Datum.Overlijden.Nr.<-as.Date(c("1996-01-01","1993-07-01"))
dead.indi.wt.date<-indi %>% unique() %>% inner_join(dead.indi.wt.date, by=c("V4"="Id.Nummer")) %>% rename(business_partner=V2) %>%
rename(Year=Datum.Overlijden.Nr.) %>%
select(business_partner, e.status, Year, type)
left.indi.wt.date<-arch %>% filter(!is.na(Datum.Vertrek.Uit.Curacao.Nr.)) %>% select(Id.Nummer,Datum.Vertrek.Uit.Curacao.Nr.)%>% mutate(e.status="Left", type="indi") %>% mutate(Id.Nummer=as.character(Id.Nummer)) |> mutate(Datum.Vertrek.Uit.Curacao.Nr.=ymd(Datum.Vertrek.Uit.Curacao.Nr.))
left.indi.wt.date[is.na(left.indi.wt.date$Datum.Vertrek.Uit.Curacao.Nr.),]$Datum.Vertrek.Uit.Curacao.Nr.<- as.Date(c("2019-01-01","2019-01-01","2019-01-01"))
left.indi.wt.date<-indi %>% unique() %>% inner_join(left.indi.wt.date, by=c("V4"="Id.Nummer")) %>% rename(business_partner=V2) %>%
rename(Year=Datum.Vertrek.Uit.Curacao.Nr.) %>%
select(business_partner, e.status, Year, type)
ct<-rbind(left.indi.wt.date,dead.indi.wt.date)
oi<-oi %>% select(-c(e.status)) %>%
left_join(ct, by="business_partner") %>%
mutate(e.status=ifelse(is.na(e.status) | e.status=="No results","active",e.status)) %>% select(-c(type)) |> rename(date.event=Year.y)
oi<-oi |> mutate(date.relaxed=date.event+60) |>
mutate(rel.status=ifelse(date.relaxed>due_date,"long past","within limit"))
fst::write.fst(oi,"./data/open_items.fst")
orgs
disorgs |>
mutate(Registration.number=as.character(Registration.number)) |>
inner_join(orgs, by=c("Registration.number"="V4"))
oi |>
filter(e.status %in% c("Passed","Left")) |>
mutate(age=ifelse(AGE_BUCKET=="5+ years", "More than 5","Less than 5")) |>
mutate(rel.status=ifelse(rel.status=="long past", "More than 60 days","Less than 60 days")) |>
group_by(contract_account,rel.status,negative, age, dunn_status) |>
summarise(amount=sum(amount))
tidyr::pivot_wider(names_from = c(rel.status,negative), values_from = amount) |>
rename(`Long Past Credit` = `long past_TRUE`,
`Within Limit Open` = `within limit_FALSE`,
`Within Limit Credit` = `within limit_TRUE`,
`Long Past Open` = `long past_FALSE`)
disc<-read.csv("./data/coc.csv") %>% unique() %>% select(-X) %>% mutate(Year=ifelse(is.na(Year),0,Year), type=c("org")) %>%
rename(business_partner=BPC, e.status=Status) %>%
group_by(business_partner, e.status) %>%
slice_max(order_by = Year,n=1) %>% select(-Name) %>% mutate(business_partner=as.character(business_partner))
dead.org<-fst::read.fst("./data/dead.fst") %>% select(V2) %>% rename(business_partner=V2)%>% mutate(e.status="Discontinued", type="org") %>% select(business_partner, e.status, type) %>% mutate(Year=c(0))
disc.org<-rbind(disc,dead.org) %>% group_by(business_partner) %>% mutate(count=n()) %>%
group_by(business_partner) %>%
slice_max(order_by = Year,n=1) %>%
mutate(count=n()) %>%
arrange(desc(count), business_partner) %>%
mutate(rown=row_number()) %>%
slice_max(order_by = rown,n=1) %>% ungroup() %>% select(-c(count,rown))
oi
do1<-disc |>
mutate(Year=ymd(paste0(Year,"-01-01"))) |>
select(-X) |>
select(BPC,Year, Status) |>
rename(Reasonunregistered=Status) |>
mutate(Status=c("Discontinued"))
disc |> filter(business_partner=="1301003645")
```
```{r}
do2<-read.csv("./data/inactive.csv") |>
select(Registration.number,Datediscontinued,Reasonunregistered) |>
mutate(Registration.number=as.character(Registration.number),Reasonunregistered=as.character(Reasonunregistered)) |>
mutate(Datediscontinued=dmy(Datediscontinued)) |>
inner_join(orgs, by=c("Registration.number"="V4")) |>
select(V2,Datediscontinued,Reasonunregistered) |>
rename(BPC=V2, Year=Datediscontinued) |>
mutate(Status="Discontinued")
do2 |> filter(BPC=="1301003645")
```
```{r}
do3<-disorgs |>
mutate(Registration.number=as.character(Registration.number)) |>
inner_join(orgs, by=c("Registration.number"="V4")) |>
mutate(Datediscontinued=mdy(Datediscontinued)) |>
select(V2,Datediscontinued,Reasonunregistered) |>
rename(BPC=V2, Year=Datediscontinued) |>
mutate(Status="Discontinued")
do3 |> filter(BPC=="1301095174")
```
```{r}
do123<-rbind(do1,do2,do3) |>
group_by(BPC, Status) |>
slice_max(order_by = Year,n=1) |> unique() |>
left_join(do3.1) |>
mutate(Reasonunregistered=ifelse(is.na(Reasonunregistered),"Not Known",Reasonunregistered)) |>
mutate(type="org") |>
rename(business_partner=BPC, e.status=Status) |>
group_by(business_partner) |>
slice_max(order_by = Year,n=1) |> unique()
```
```{r}
ct<-rbind(left.indi.wt.date,dead.indi.wt.date)
ct<-ct |> mutate(Reasonunregistered="Not relevant for individuals") |>
select(1,3,5,2,4) |> rbind(do123)
ct
n.oi<-oi %>% select(-c(e.status, Year.x, date.event, date.relaxed, rel.status, Name)) %>%
left_join(ct, by="business_partner") %>%
mutate(e.status=ifelse(is.na(e.status) | e.status=="No results","active",e.status)) %>% select(-c(type)) |> rename(date.event=Year) |>
mutate(date.relaxed=date.event+60) |>
mutate(rel.status=ifelse(date.relaxed>due_date,"long past","within limit"))
fst::write.fst(n.oi,"./data/open_items_new.fst")
unique(n.oi$e.status)
unique(n.oi$Reasonunregistered)
```
```{r}
arch |> filter(Id.Nummer %in% c("1968052211","1972090816","1976052001"))
oi[oi$contract_account=="13090404",]
```
```{r}
oi |>
filter(o.type=="Real") |>
filter(negative==T) |>
group_by(business_partner, contract_account, bp_category, status.x) |>
summarize(amount=sum(amount))
```
```{r}
oi |>
ungroup() |>
ungroup() |>
group_by(o.type, negative) |>
mutate(amount=sum(amount))
```
## Including Plots
You can also embed plots, for example:
```{r pressure, echo=FALSE}
con <- DBI::dbConnect(RPostgres::Postgres(),dbname = 'postgres',
host = 'lanubiadsdbpgsql.postgres.database.azure.com', # i.e. 'ec2-54-83-201-96.compute-1.amazonaws.com'
port = 5432, # or any other port specified by your DBA
user = 'lanubiadsdbpgsql@lanubiadsdbpgsql',
password = 'LaNubia@2021',
base::list(sslmode="require", connect_timeout="10"),
service = NULL)
DBI::dbListTables(con)
DBI::dbWriteTable(con, "open_items", oi)
```
Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.