--- title: "Untitled" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## R Markdown This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see . When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this: ```{r cars} oi<-fst::read.fst("./data/open_items.fst") # oi %>% mutate(spread=ifelse(spread=="Only less than 5", "Only less than 5 yrs", # ifelse(spread==" Only more than 5","Only more than 5 yrs",spread))) %>% fst::write.fst("./data/open_items.fst") id<-read.csv("./data/id.csv", sep=";", header=F) library(dplyr) indi<-id %>% filter(V3=="Identiteitsbewijs") %>% select(V2,V4) orgs<-id |> dplyr::filter(V3=="KVK – Chamber of Commerce") |> unique() disorgs<-read.csv("./data/diorg.csv") |> unique() arch<-read.csv("./data/Arch.csv") dead.indi<-arch %>% filter(!is.na(Datum.Overlijden.Nr.)) %>% select(c(Id.Nummer,Datum.Overlijden.Nr.)) %>% mutate(e.status="Passed", type="indi")%>% mutate(Id.Nummer=as.character(Id.Nummer)) left.indi<-arch %>% filter(!is.na(Datum.Vertrek.Uit.Curacao.Nr.)) %>% select(Id.Nummer)%>% mutate(e.status="Left", type="indi") %>% mutate(Id.Nummer=as.character(Id.Nummer)) left.indi<-indi %>% unique() %>% inner_join(left.indi, by=c("V4"="Id.Nummer")) %>% rename(business_partner=V2) %>% select(business_partner, e.status, type) %>% mutate(Year=c(0)) %>% select(business_partner, e.status, Year, type) dead.indi<-indi %>% unique() %>% inner_join(dead.indi, by=c("V4"="Id.Nummer")) %>% rename(business_partner=V2) %>% mutate(Year=c(0)) %>% select(business_partner, e.status, Year, type) disc<-read.csv("./data/coc.csv") %>% unique() %>% select(-X) %>% mutate(Year=ifelse(is.na(Year),0,Year), type=c("org")) %>% rename(business_partner=BPC, e.status=Status) %>% group_by(business_partner, e.status) %>% slice_max(order_by = Year,n=1) %>% select(-Name) %>% mutate(business_partner=as.character(business_partner)) dead.org<-fst::read.fst("./data/dead.fst") %>% select(V2) %>% rename(business_partner=V2)%>% mutate(e.status="Discontinued", type="org") %>% select(business_partner, e.status, type) %>% mutate(Year=c(0)) disc.org<-rbind(disc,dead.org) %>% group_by(business_partner) %>% mutate(count=n()) %>% group_by(business_partner) %>% slice_max(order_by = Year,n=1) %>% mutate(count=n()) %>% arrange(desc(count), business_partner) %>% mutate(rown=row_number()) %>% slice_max(order_by = rown,n=1) %>% ungroup() %>% select(-c(count,rown)) ct<-rbind(disc.org,left.indi,dead.indi) oi<-oi %>% select(-c(e.status)) %>% left_join(ct, by="business_partner") %>% mutate(e.status=ifelse(is.na(e.status) | e.status=="No results","active",e.status)) %>% select(-c(type)) dunn<-fst::read.fst("./data/dunning.fst") last.dunn<-dunn %>% group_by(DUNN_GPART, DUNN_VKONT) %>% filter(DUNN_DATE==max(DUNN_DATE))%>% mutate(DUNN_GPART=as.character(DUNN_GPART)) no.cont.dunn<-last.dunn %>% filter(is.na(DUNN_VKONT)) %>% mutate(DUNN_GPART=as.character(DUNN_GPART)) %>% group_by(DUNN_GPART) %>% filter(DUNN_DATE==max(DUNN_DATE)) %>% # To find out the last dunning select(DUNN_GPART, DUNN_VKONT, DUNN_BILL_DOC, DUNN_ACTIVITY, DUNN_BILL_DOC, DUNN_DATE) %>% unique() %>% mutate(DUNN_VKONT=as.character(DUNN_VKONT)) cont.dunn<-last.dunn %>% filter(!is.na(DUNN_VKONT)) %>% mutate(DUNN_VKONT=as.character(DUNN_VKONT)) %>% group_by(DUNN_VKONT) %>% filter(DUNN_BILL_DOC==max(DUNN_BILL_DOC)) %>% # To find out the last dunning select(DUNN_GPART, DUNN_VKONT, DUNN_BILL_DOC, DUNN_ACTIVITY, DUNN_BILL_DOC,DUNN_DATE) %>% unique() # Because there are several dunnings on same date dunn.list.to.use<- rbind(no.cont.dunn, cont.dunn) %>% group_by(DUNN_GPART) %>% filter(DUNN_DATE==max(DUNN_DATE)) %>% select(DUNN_GPART, DUNN_VKONT, DUNN_DATE) %>% unique() dunn.list.to.use.nocont<-dunn.list.to.use %>% filter(is.na(DUNN_VKONT)) dunn.list.to.use.cont<-dunn.list.to.use %>% filter(!is.na(DUNN_VKONT)) oi<- oi %>% left_join(dunn.list.to.use.cont, by=c("contract_account"="DUNN_VKONT")) %>% left_join(dunn.list.to.use.nocont, by=c("business_partner"="DUNN_GPART")) %>% mutate( dunn_status= case_when( is.na(DUNN_DATE.x) & is.na(DUNN_DATE.y) ~ "No Dunning", is.na(DUNN_DATE.x) & (due_date>DUNN_DATE.y) ~ "Dunned in Past", is.na(DUNN_DATE.y) & (due_date>DUNN_DATE.x) ~ "Dunned in Past", TRUE ~ "Dunned" ) ) %>% select(-c(DUNN_GPART, DUNN_DATE.x,DUNN_VKONT,DUNN_DATE.y)) govtnow<-read.csv("./data/govtnow.csv") |> dplyr::select(1:2) |> dplyr::mutate(business_partner=as.character(business_partner)) noi<-oi |> dplyr::inner_join(govtnow, by="business_partner") |> dplyr::mutate(govt.status= dplyr::case_when( contract_type=="Government" & !is.na(Name) ~ "Govt in both", contract_type=="Own" & !is.na(Name) ~ "Own in SAP govt in list", contract_type=="Street Light" & !is.na(Name) ~ "Street Light in SAP govt in list", contract_type=="Government" & is.na(Name) ~ "Govt in SAP not in list", contract_type=="Own" & is.na(Name) ~ "Own in SAP not in list", contract_type=="Street Light" & is.na(Name) ~ "Street Light in SAP not in list", contract_type=="Commercial" & !is.na(Name) ~ "Commercial in SAP govt in list", contract_type=="Residential" & !is.na(Name) ~ "Residential in SAP govt in list", contract_type=="Industrial" & !is.na(Name) ~ "Industrial in SAP govt in list", contract_type=="Commercial" & is.na(Name) ~ "Commercial in SAP not in list", contract_type=="Residential" & is.na(Name) ~ "Residential in SAP not in list", contract_type=="Industrial" & is.na(Name) ~ "Industrial in SAP not in list" ) ) noi |> dplyr::select(business_partner, contract_account, contract_type,govt.status) |> write.csv("") oi1<-oi |> dplyr::left_join(govtnow, by="business_partner") |> dplyr::mutate(new_contract_type= dplyr::case_when( contract_type=="Government" & !is.na(Name) ~ "Government", contract_type=="Own" & !is.na(Name) ~ "Own", contract_type=="Street Light" & !is.na(Name) ~ "Government", contract_type=="Government" & is.na(Name) ~ "Government", contract_type=="Own" & is.na(Name) ~ "Own", contract_type=="Street Light" & is.na(Name) ~ "Government", contract_type=="Commercial" & !is.na(Name) ~ "Government", contract_type=="Residential" & !is.na(Name) ~ "Government", contract_type=="Industrial" & !is.na(Name) ~ "Government", contract_type=="Commercial" & is.na(Name) ~ "Commercial", contract_type=="Residential" & is.na(Name) ~ "Residential", contract_type=="Industrial" & is.na(Name) ~ "Industrial" ) ) fst::write.fst(oi1,"./data/open_items.fst") rm(noi) disc ``` ```{r} noi |> dplyr::filter(govt.status=="Commercial in SAP govt in list") unique(oi1$new_contract_type) unique(oi$o.type) unique(oi$contract_type) oi1 |> dplyr::filter(new_contract_type=="Own") |> dplyr::filter(status.x=="Only Active") |> group_by(business_partner,contract_account, negative) |> summarize(amount=sum(amount)) |> pivot_wider(names_from=negative, values_from=amount) |> tfrnma() tfrnma<-function(dat){ if("TRUE" %in% colnames(dat)){ dat<-dat |> rename(credits=`TRUE`) } if("FALSE" %in% colnames(dat)){ dat<-dat |> rename(credits=`FALSE`) } dat } ``` ```{r} oi |> dplyr::filter(documen_desc=="Installments") ``` ```{r} oi library(lubridate) dead.indi.wt.date<-arch %>% filter(!is.na(Datum.Overlijden.Nr.)) %>% select(c(Id.Nummer,Datum.Overlijden.Nr.)) %>% mutate(e.status="Passed", type="indi")%>% mutate(Id.Nummer=as.character(Id.Nummer)) %>% mutate(Datum.Overlijden.Nr.=ymd(Datum.Overlijden.Nr.)) dead.indi.wt.date[is.na(dead.indi.wt.date$Datum.Overlijden.Nr.),]$Datum.Overlijden.Nr.<-as.Date(c("1996-01-01","1993-07-01")) dead.indi.wt.date<-indi %>% unique() %>% inner_join(dead.indi.wt.date, by=c("V4"="Id.Nummer")) %>% rename(business_partner=V2) %>% rename(Year=Datum.Overlijden.Nr.) %>% select(business_partner, e.status, Year, type) left.indi.wt.date<-arch %>% filter(!is.na(Datum.Vertrek.Uit.Curacao.Nr.)) %>% select(Id.Nummer,Datum.Vertrek.Uit.Curacao.Nr.)%>% mutate(e.status="Left", type="indi") %>% mutate(Id.Nummer=as.character(Id.Nummer)) |> mutate(Datum.Vertrek.Uit.Curacao.Nr.=ymd(Datum.Vertrek.Uit.Curacao.Nr.)) left.indi.wt.date[is.na(left.indi.wt.date$Datum.Vertrek.Uit.Curacao.Nr.),]$Datum.Vertrek.Uit.Curacao.Nr.<- as.Date(c("2019-01-01","2019-01-01","2019-01-01")) left.indi.wt.date<-indi %>% unique() %>% inner_join(left.indi.wt.date, by=c("V4"="Id.Nummer")) %>% rename(business_partner=V2) %>% rename(Year=Datum.Vertrek.Uit.Curacao.Nr.) %>% select(business_partner, e.status, Year, type) ct<-rbind(left.indi.wt.date,dead.indi.wt.date) oi<-oi %>% select(-c(e.status)) %>% left_join(ct, by="business_partner") %>% mutate(e.status=ifelse(is.na(e.status) | e.status=="No results","active",e.status)) %>% select(-c(type)) |> rename(date.event=Year.y) oi<-oi |> mutate(date.relaxed=date.event+60) |> mutate(rel.status=ifelse(date.relaxed>due_date,"long past","within limit")) fst::write.fst(oi,"./data/open_items.fst") orgs disorgs |> mutate(Registration.number=as.character(Registration.number)) |> inner_join(orgs, by=c("Registration.number"="V4")) oi |> filter(e.status %in% c("Passed","Left")) |> mutate(age=ifelse(AGE_BUCKET=="5+ years", "More than 5","Less than 5")) |> mutate(rel.status=ifelse(rel.status=="long past", "More than 60 days","Less than 60 days")) |> group_by(contract_account,rel.status,negative, age, dunn_status) |> summarise(amount=sum(amount)) tidyr::pivot_wider(names_from = c(rel.status,negative), values_from = amount) |> rename(`Long Past Credit` = `long past_TRUE`, `Within Limit Open` = `within limit_FALSE`, `Within Limit Credit` = `within limit_TRUE`, `Long Past Open` = `long past_FALSE`) disc<-read.csv("./data/coc.csv") %>% unique() %>% select(-X) %>% mutate(Year=ifelse(is.na(Year),0,Year), type=c("org")) %>% rename(business_partner=BPC, e.status=Status) %>% group_by(business_partner, e.status) %>% slice_max(order_by = Year,n=1) %>% select(-Name) %>% mutate(business_partner=as.character(business_partner)) dead.org<-fst::read.fst("./data/dead.fst") %>% select(V2) %>% rename(business_partner=V2)%>% mutate(e.status="Discontinued", type="org") %>% select(business_partner, e.status, type) %>% mutate(Year=c(0)) disc.org<-rbind(disc,dead.org) %>% group_by(business_partner) %>% mutate(count=n()) %>% group_by(business_partner) %>% slice_max(order_by = Year,n=1) %>% mutate(count=n()) %>% arrange(desc(count), business_partner) %>% mutate(rown=row_number()) %>% slice_max(order_by = rown,n=1) %>% ungroup() %>% select(-c(count,rown)) oi do1<-disc |> mutate(Year=ymd(paste0(Year,"-01-01"))) |> select(-X) |> select(BPC,Year, Status) |> rename(Reasonunregistered=Status) |> mutate(Status=c("Discontinued")) disc |> filter(business_partner=="1301003645") ``` ```{r} do2<-read.csv("./data/inactive.csv") |> select(Registration.number,Datediscontinued,Reasonunregistered) |> mutate(Registration.number=as.character(Registration.number),Reasonunregistered=as.character(Reasonunregistered)) |> mutate(Datediscontinued=dmy(Datediscontinued)) |> inner_join(orgs, by=c("Registration.number"="V4")) |> select(V2,Datediscontinued,Reasonunregistered) |> rename(BPC=V2, Year=Datediscontinued) |> mutate(Status="Discontinued") do2 |> filter(BPC=="1301003645") ``` ```{r} do3<-disorgs |> mutate(Registration.number=as.character(Registration.number)) |> inner_join(orgs, by=c("Registration.number"="V4")) |> mutate(Datediscontinued=mdy(Datediscontinued)) |> select(V2,Datediscontinued,Reasonunregistered) |> rename(BPC=V2, Year=Datediscontinued) |> mutate(Status="Discontinued") do3 |> filter(BPC=="1301095174") ``` ```{r} do123<-rbind(do1,do2,do3) |> group_by(BPC, Status) |> slice_max(order_by = Year,n=1) |> unique() |> left_join(do3.1) |> mutate(Reasonunregistered=ifelse(is.na(Reasonunregistered),"Not Known",Reasonunregistered)) |> mutate(type="org") |> rename(business_partner=BPC, e.status=Status) |> group_by(business_partner) |> slice_max(order_by = Year,n=1) |> unique() ``` ```{r} ct<-rbind(left.indi.wt.date,dead.indi.wt.date) ct<-ct |> mutate(Reasonunregistered="Not relevant for individuals") |> select(1,3,5,2,4) |> rbind(do123) ct n.oi<-oi %>% select(-c(e.status, Year.x, date.event, date.relaxed, rel.status, Name)) %>% left_join(ct, by="business_partner") %>% mutate(e.status=ifelse(is.na(e.status) | e.status=="No results","active",e.status)) %>% select(-c(type)) |> rename(date.event=Year) |> mutate(date.relaxed=date.event+60) |> mutate(rel.status=ifelse(date.relaxed>due_date,"long past","within limit")) fst::write.fst(n.oi,"./data/open_items_new.fst") unique(n.oi$e.status) unique(n.oi$Reasonunregistered) ``` ```{r} arch |> filter(Id.Nummer %in% c("1968052211","1972090816","1976052001")) oi[oi$contract_account=="13090404",] ``` ```{r} oi |> filter(o.type=="Real") |> filter(negative==T) |> group_by(business_partner, contract_account, bp_category, status.x) |> summarize(amount=sum(amount)) ``` ```{r} oi |> ungroup() |> ungroup() |> group_by(o.type, negative) |> mutate(amount=sum(amount)) ``` ## Including Plots You can also embed plots, for example: ```{r pressure, echo=FALSE} con <- DBI::dbConnect(RPostgres::Postgres(),dbname = 'postgres', host = 'lanubiadsdbpgsql.postgres.database.azure.com', # i.e. 'ec2-54-83-201-96.compute-1.amazonaws.com' port = 5432, # or any other port specified by your DBA user = 'lanubiadsdbpgsql@lanubiadsdbpgsql', password = 'LaNubia@2021', base::list(sslmode="require", connect_timeout="10"), service = NULL) DBI::dbListTables(con) DBI::dbWriteTable(con, "open_items", oi) ``` Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.