You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

592 lines
20 KiB

4 years ago
---
title: "Projects"
author: "Scary Scarecrow"
date: "1/12/2022"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(readxl)
library(dplyr)
library(lubridate)
library(DT)
library(tidyr)
mutlstxlrdr<-function(){
for( i in seq_along(sheet.na)){
colnames<-unique(saptemplate[saptemplate$`Sheet Name`==snames[i],]$Header)
df<-read.table("", col.names = colnames)
assign(snames[i], df)
}
}
do.call(file.remove, list(list.files("./projects/errors/mandatory/", full.names = TRUE)))
do.call(file.remove, list(list.files("./projects/errors/codelist/", full.names = TRUE)))
do.call(file.remove, list(list.files("./projects/errors/length/", full.names = TRUE)))
do.call(file.remove, list(list.files("./projects/summary/", full.names = TRUE)))
do.call(file.remove, list(list.files("./projects/output/", full.names = TRUE)))
4 years ago
```
## Data transformation workflow
Following is the proposed preliminary workflow for the data transformation project.
>All file of a segment (contacts/accounts etc..) should be inside the relevant folder. Each folder should have one folder for all codelist files. All legacy data (one file for each country) should be inside the raw-data folder, named after each country. Another file having field definitions including name of the matching column from the legacy file should also be there.
>*Make sure that there are no hidden files inside the directory.*
4 years ago
### Relationship files
```{r echo=TRUE, message=FALSE, warning=FALSE}
relfilenames <- list.files("./projects/relationship", pattern="*.xls", full.names = T)
print(relfilenames)
rel_files<-NULL
for(i in seq_along(relfilenames)){
rel_files[[i]]<-read_excel(path = relfilenames[[i]], sheet = 1)
}
names(rel_files)<-gsub("./projects/relationship/R","",relfilenames)
# Names of the files imported
names(rel_files)
```
4 years ago
### Code Lists
```{r Create List of Files, echo=TRUE, message=FALSE, warning=FALSE}
filenames <- list.files("./projects/CodeList", pattern="*.xlsx", full.names = T) # We can avoid creating a separate directory for code list. But organizing may be difficult. However, this can be explored further if we want transform all the data in one go i.e. not by functions (contacts, accounts etc.).
# File paths
print(filenames)
```
Check manually if the above list includes all the codelist files
If correct, then read the files.
```{r codelistreader, echo=TRUE, message=FALSE, warning=FALSE}
4 years ago
sheet_names <- lapply(filenames, excel_sheets) # Creates a list of the sheet names
codelist_files <- NULL
for (i in seq_along(filenames)) {
a <- lapply(excel_sheets(filenames[[i]]), read_excel, path = filenames[[i]], col_types = "text") # Reads the sheets of the excel files
names(a) <- c(sheet_names[[i]]) # Renames them according to the sheet names extracted above
codelist_files <- c(codelist_files, a)
}
4 years ago
# Names of the files imported
names(codelist_files)
4 years ago
# codelist_files<-unique(codelist_files)
4 years ago
```
### Templates
Let us now extract the data. Below we are reading only one file having all data related to `Contacts` from the legacy system.
```{r readlegacyfilepath, echo=TRUE, message=FALSE, warning=FALSE}
oldfilepath<-list.files("./projects/raw-data", pattern="*.xls", full.names = T) # Change the path, check pattern
print(oldfilepath)
```
Check it the list matches the actual files, manually.
```{r readlegacyfiles, echo=TRUE}
old_files<-NULL
#read_excel(path = oldfilepath[[i]], sheet = 1)
for(i in seq_along(oldfilepath)){
old_files[[i]]<-read_excel(path = oldfilepath[[i]], sheet = 1)
}
names(old_files)<-gsub("./projects/raw-data/","",oldfilepath)
```
*Some errors in the legacy file noticed. Columns with similar or same name exists.*
```{r readSAPtemplate, echo=TRUE, message=FALSE, warning=FALSE}
saptemplate<-read_excel("./projects/template.xlsx", sheet = "Field_Definitions")
# First few rows of the imported data
head(saptemplate)
```
*Please note that the format of the tables (sheet) has been slightly changed. Earlier the corresponding sheet name was mentioned in a row before the actual table. Now, all the rows mention the corresponding sheet name. This was done manually for convenience of data extraction*
```{r createmptySAPfiles, echo=TRUE, message=FALSE, warning=FALSE}
#orilo<-"en_US.UTF-8"
#Sys.setlocale(locale="en_US.UTF-8")
strt<-Sys.time()
snames <- unique(saptemplate$`Sheet Name`)
for (h in seq_along(old_files)) {
# Copy original data
old.copy <- old_files[[h]]
print(paste0(names(old_files[h])," imported"))
4 years ago
err.summ<-data.frame(Country=NULL, Name=NULL, Expected=NULL, Actual=NULL) #Error Cal
# Creates data frame for each sheet in snames
for (i in seq_along(snames)) {
print(paste0("Processing ..",snames[i]))
# Select the column names from the field description sheet
print("Creating template")
sel.template.desc <-
saptemplate[saptemplate$`Sheet Name` == snames[i], ]
print("Creating column names")
sel.template.desc.colnames <- sel.template.desc$Header
# Create a list by adding values from corresponding legacy data
temp <- NULL
print("adding values to template ")
4 years ago
if(snames[i] %in% c("Opportunity_Competitor_Party_In", "Opportunity_EndBuyer_Contact_Pa",
"Opportunity_External_Party_Info","Opportunity_Installed_Object",
"Opportunity_Product","Opportunity_Other_Party_Informa","Opportunity_Payer_Contact_Party",
"Opportunity_Product_Recipient_C","Opportunity_Prospect_Contact_Pa",
"Opportunity_Revenue_Splits","Opportunity_Sales_Employee_Part",
"Opportunity_Sales_Partner_Party","Opportunity_Notes",
"Opportunity_Competitor_Product","Contact_Party_Information",
"Opportunity_Item_Party_Informat","Opportunity_Product_Quantity_Pl",
"Opportunity_Product_Revenue_Pla","Opportunity_Product_Notes",
"Opportunity_Header_Revenue_Plan", "Opportunity_Account_Team_Party_")){
4 years ago
next
}
if(snames[i]=="Opportunity"){
4 years ago
for (j in seq_along(sel.template.desc.colnames)) {
4 years ago
print(paste("Processing ",sel.template.desc.colnames[j]))
if(sel.template.desc.colnames[j]=="Expected_Value"){
temp[j]<-ifelse(!is.na(old.copy$`User Provided`), old.copy$`User Provided`, old.copy$`Potential Customer`)
next
}
if(sel.template.desc.colnames[j]=="Sales_Unit" | sel.template.desc.colnames[j]=="Sales_Organization"){
temp[j]<-paste0(substr(names(old_files[h]), 1, 2),"01")
next
}
if(sel.template.desc.colnames[j]=="International_project"){
temp[j]<-ifelse(is.na(old.copy[, sel.template.desc$oldkey[j]]),FALSE,TRUE)
next
}
if(sel.template.desc.colnames[j]=="LEVIAT_specified"){
temp[j]<-ifelse(!is.na(old.copy$halfenspecified),old.copy$halfenspecified, old.copy$competitor)
next
}
if(sel.template.desc.colnames[j]=="Project_Country"){
temp[j]<-ifelse(is.na(old.copy$Country), NA, substr(names(old_files[h]), 1, 2))
next
}
if(sel.template.desc.colnames[j]=="BIM_designed"){
temp[j]<-ifelse(is.na(old.copy$`BIM designed`), "Software Unknown", old.copy$`BIM designed`)
next
}
temp[j] <- ifelse(!is.na(sel.template.desc$default[j]), as.character(as.vector(sel.template.desc$default[j])),
ifelse(
sel.template.desc$oldkey[j]=="NA" | is.na(sel.template.desc$oldkey[j]), NA,
as.vector(old.copy[, sel.template.desc$oldkey[j]])
)
)
4 years ago
4 years ago
}
# Rename the columns according to field description
print("renaming template ")
names(temp) <- sel.template.desc.colnames
# Create data frame from the list
df <- as.data.frame(temp)
print("Converted to data frame")
4 years ago
}
4 years ago
if(snames[i]=="Opportunity_Preceding_and_Follo"){
old.copy.f<-old.copy |> filter(`Project hierarchy`=="Opportunity")
if(nrow(old.copy.f)==0){next} #If not opportunity found in data go to next loop
4 years ago
for (j in seq_along(sel.template.desc.colnames)) {
temp[j] <- ifelse(!is.na(sel.template.desc$default[j]), as.character(as.vector(sel.template.desc$default[j])),
ifelse(
sel.template.desc$oldkey[j]=="NA" | is.na(sel.template.desc$oldkey[j]), NA,
as.vector(old.copy.f[, sel.template.desc$oldkey[j]])
4 years ago
)
)
}
4 years ago
# Rename the columns according to field description
print("renaming template ")
names(temp) <- sel.template.desc.colnames
# Create data frame from the list
df <- as.data.frame(temp)
print("Converted to data frame")
corr.seq<-colnames(df) # preserving sequence name seq is not maintained post join
df<-df |>
4 years ago
mutate(Opportunity_External_Key=str_sub(Reference_Doc_External_Key,1,str_length(Reference_Doc_External_Key)-4)) |>
mutate(External_Key=paste("OPF",Opportunity_External_Key,Reference_Doc_External_Key, sep = "_")) |> select(corr.seq)
4 years ago
}
if(snames[i]=="Opportunity_Party_Information"){
rdf<-rel_files[[names(old_files[h])]]
if(is.null(rdf)){next} #If not data found loop
4 years ago
for (j in seq_along(sel.template.desc.colnames)) {
temp[j] <- ifelse(!is.na(sel.template.desc$default[j]), as.character(as.vector(sel.template.desc$default[j])),
ifelse(
sel.template.desc$oldkey[j]=="NA" | is.na(sel.template.desc$oldkey[j]), NA,
as.vector(rdf[, sel.template.desc$oldkey[j]])
4 years ago
)
)
}
4 years ago
# Rename the columns according to field description
print("renaming template ")
names(temp) <- sel.template.desc.colnames
# Create data frame from the list
df <- as.data.frame(temp)
print("Converted to data frame")
corr.seq<-colnames(df) # preserving sequence name seq is not maintained post join
df<-df |>
mutate(External_Key=paste("INV",Opportunity_External_Key,Party_ID,Role,Party_External_Key,sep="_")) |> select(corr.seq)
4 years ago
}
if(snames[i]=="Opportunity_Sales_Team_Party_In"){
for (j in seq_along(sel.template.desc.colnames)) {
temp[j] <- ifelse(!is.na(sel.template.desc$default[j]), as.character(as.vector(sel.template.desc$default[j])),
ifelse(
sel.template.desc$oldkey[j]=="NA" | is.na(sel.template.desc$oldkey[j]), NA,
as.vector(old.copy[, sel.template.desc$oldkey[j]])
)
)
}
# Rename the columns according to field description
print("renaming template ")
names(temp) <- sel.template.desc.colnames
# Create data frame from the list
df <- as.data.frame(temp)
print("Converted to data frame")
corr.seq<-colnames(df) # preserving sequence name seq is not maintained post join
#if(names(old_files[h])=="DE.xls"){stop()}
df<-df |> mutate(resp=old.copy$Responsible, apptech=old.copy$`application technology`, backoff=old.copy$`Back office`,
pres=old.copy$Presales) |>
#mutate(resp=paste0(resp,"_resp"), apptech=paste0(apptech,"_apptech"), backoff=paste0(backoff,"_backoff")) |>
4 years ago
pivot_longer(cols = c(resp, apptech, backoff, pres)) |>
filter(!is.na(value)) |>
select(-c(Party_ID,Role)) |>
rename(Party_ID=value) |>
rename(Role=name) |>
4 years ago
mutate(Role=ifelse(Role=="resp","39", ifelse(Role=="apptech", "ZIN016", ifelse(Role=="backoff", "ZIN002","ZIN011")))) |>
mutate(External_Key=paste("PAR",Opportunity_External_Key,Party_ID,Role, sep="_")) |>
select(corr.seq)
4 years ago
}
4 years ago
# Error summary file
Expected<-nrow(df)
#Select essential rows
print("Identifying essential rows")
sel.template.desc |>
filter(Mandatory == "Yes") |>
pull(Header) -> essential.columns
error.mandatory <- NULL
error.df<-data.frame(Country=NULL, Name=NULL, Rows=NULL, Expected=NULL)
# Operate on essential columns including creation of error file
for (k in seq_along(essential.columns)) {
4 years ago
4 years ago
print("Creating and writing data with missing mandatory values")
manerrdt<-df[is.na(df[, essential.columns[k]]), ]
if(nrow(manerrdt>0)){
manerrdt<-manerrdt |> mutate(error=paste0(essential.columns[k]," missing"))
}
4 years ago
assign(
paste0(
"error_mandatory_",
substr(names(old_files[h]), 2, 3),
4 years ago
"_",
snames[i],
"_",
essential.columns[k]
),
manerrdt
4 years ago
)
# TO be saved in error files
if(nrow(manerrdt)>0){
4 years ago
write.csv(
manerrdt,
4 years ago
paste0(
"./projects/errors/mandatory/",
substr(names(old_files[h]), 1, 2),
"_",
snames[i],
"_",
essential.columns[k],
"_error_mandatory.csv"
), row.names = F, na=""
)
}
# Error summary file
Country<-substr(names(old_files[h]), 1, 2)
Name<-snames[i]
err.type<-paste0("Missing ",essential.columns[k])
err.count<-nrow(df[is.na(df[, essential.columns[k]]), ])
print("Removing rows with empty essetial columns")
df <- df[!is.na(df[, essential.columns[k]]), ]
if(err.count>0){
error.df<-rbind(error.df,data.frame(Country=Country, Name=Name, err.type=err.type, err.count=err.count)) #Error cal
}
}
print("Identifying columns associated with codelists")
# List of columns that have a codelist
codelistcols <- sel.template.desc |>
filter(!is.na(`CodeList File Path`)) |> pull(Header)
for (k in seq_along(codelistcols)) {
4 years ago
# if(codelistcols[k]=="Currency"){
# print("Found Currency. Adding 0.")
# df$International_Version<-"CHF"
# }
4 years ago
print(paste0("Identifying errors ",codelistcols[k]))
def.rows <-
which(!df[, codelistcols[k]] %in% c(pull(codelist_files[codelistcols[k]][[1]], Description), NA))
def.n<- df[def.rows, 1]
def.rows.val <-
df[!df[, codelistcols[k]] %in% c(pull(codelist_files[codelistcols[k]][[1]], Description), NA), codelistcols[k]]
def.colname <- rep(codelistcols[k],length.out = length(def.rows))
def <- data.frame(def.rows, def.n,def.rows.val,def.colname)
4 years ago
if(nrow(def>0)){
assign(paste0(
"error_codematch_",
substr(names(old_files[1]), 1, 2),
"_",
snames[i],
"_",
codelistcols[k]
),
def) # TO be saved
write.csv(
def,
paste0(
"./projects/errors/codelist/",
substr(names(old_files[h]), 1, 2),
"_",
snames[i],
"_",
codelistcols[k],
"_error_codematch_.csv"
), row.names = F, na=""
)
}
err.type<-paste0("Codelist Mismatch ", codelistcols[k]) #Error cal
err.count<-nrow(def) #Error cal
if(err.count>0){
error.df<-rbind(error.df,data.frame(Country=Country, Name=Name, err.type=err.type, err.count=err.count)) #Error cal
}
print(paste0("Removing errors ",codelistcols[k]))
# Removes any mismatch
df[!df[, codelistcols[k]] %in% c(pull(codelist_files[codelistcols[k]][[1]], Description), NA), codelistcols[k]] <-
NA
# Matches each column with the corresponding code list and returns the value
df[, codelistcols[k]] <-
pull(codelist_files[codelistcols[k]][[1]], 2)[match(pull(df, codelistcols[k]),
pull(codelist_files[codelistcols[k]][[1]], Description))]
}
max.length <- as.numeric(sel.template.desc$`Max Length`)
dtype <- sel.template.desc$`Data Type`
rowval <- NULL
ival <- NULL
rval <- NULL
lenght.issue.df <- NULL
# Changing the data class
for (k in 1:ncol(df)) {
if (dtype[k] == "String") {
df[, k] <- as.character(pull(df, k))
}
if (dtype[k] == "Boolean") {
df[, k] <- as.logical(pull(df, k))
}
if (dtype[k] == "DateTime") {
4 years ago
df[, k] <- lubridate::ymd(pull(df, k))
4 years ago
}
if (dtype[k] == "Time") {
df[, k] <- lubridate::hms(pull(df, k))
} # This list will increase and also change based on input date and time formats
}
4 years ago
# print("Rectifying streetname")
# # Street and House Number
# if (any(colnames(df) == "Street")) {
# print("found steet")
# # stop()
#
# df$Streetname<-NA
# df$HouseNumber<-NA
# #df |> extract("Street", "(\\D+)(\\d.*)")
# df<-tidyr::extract(df,
# "Street",
# c("Streetname", "HouseNumber"),
# "(\\D+)(\\d.*)")
# df <- df |>
# select(-c("House_Number")) |>
# rename(Street = Streetname, House_Number = HouseNumber) |>
# select(all_of(sel.template.desc.colnames))
# }
4 years ago
# Length Rectification
colclasses <- lapply(df, class)
print("Rectifying Length")
for (k in 1:ncol(df)) {
if (colclasses[[k]] == "character") {
print("found character column ")
rowval <- pull(df, 1)
ival <- ifelse(nchar(pull(df, k))== 0 | is.na(nchar(pull(df, k))),1,nchar(pull(df, k)))
rval <- max.length[k]
colval <- pull(df, k)
colnm<-colnames(df)[k]
cntr<-substr(names(old_files[h]), 1, 2)
4 years ago
# rectifying data length
df[, k] <-
ifelse(nchar(pull(df, k)) > max.length[k],
substring(pull(df, k), 1, max.length[k]),
pull(df, k))
}
lenght.issue.df <-
rbind(lenght.issue.df, data.frame(rowval, ival, rval, colnm, colval,cntr))
4 years ago
err.type<- paste0("Length error ", colnames(df)[k]) # Error cal
err.count<- sum(ival>rval, na.rm = T) # Error cal
if(err.count>0){
error.df<-rbind(error.df,data.frame(Country=Country, Name=Name, err.type=err.type, err.count=err.count)) #Error cal
}
}
lenght.issue.df <- dplyr::filter(lenght.issue.df,ival>rval)
if(nrow(lenght.issue.df)>0){
write.csv(lenght.issue.df,
paste0(
"./projects/errors/length/",
substr(names(old_files[h]), 1, 2),
"_",
snames[i],
"_length_error.csv"
), row.names = F, na="")
}
assign(snames[i], df)
write.csv(df,paste0("./projects/output/", substr(names(old_files[h]), 1, 2), "_", snames[i],".csv"), row.names = F, na="")
if(nrow(error.df)>0){
write.csv(error.df, paste0("./projects/summary/",substr(names(old_files[h]), 1, 2), "_", snames[i],"_error",".csv"), row.names = F, na="") # Error write
}
err.summ<-rbind(err.summ,data.frame(Country=Country, Name=Name, Expected=Expected, Actual=nrow(df))) #Error Cal
}
write.csv(err.summ,
paste0("./projects/summary/" ,substr(names(old_files[h]), 1, 2), "_", snames[i],"_sumerror",".csv"), row.names = F, na="") # Error Write
}
end<-Sys.time()
end-strt
```
*The code failed because Department Column appears several times in the data and while importing R renamed them to Department..xx).*
*Manually verify if these are the required templates*
```{r}
opfilepath<-list.files("./projects/output", pattern="*Opportunity.csv", full.names = T)
opfiles<-lapply(opfilepath, read.csv)
opdf<-do.call(rbind.data.frame, opfiles)
write.csv(opdf,"./projects/output/combined/combinedopportunity.csv")
opfilepath<-list.files("./projects/output", pattern="*Opportunity_Party_Information.csv", full.names = T)
opfiles<-lapply(opfilepath, read.csv)
opdf<-do.call(rbind.data.frame, opfiles)
write.csv(opdf,"./projects/output/combined/combinedopportunitypartyinfo.csv")
opfilepath<-list.files("./projects/output", pattern="*Opportunity_Preceding_and_Follo.csv", full.names = T)
opfiles<-lapply(opfilepath, read.csv)
opdf<-do.call(rbind.data.frame, opfiles)
write.csv(opdf,"./projects/output/combined/combinedopportunityprecedingfollo.csv")
opfilepath<-list.files("./projects/output", pattern="*Opportunity_Sales_Team_Party_In.csv", full.names = T)
opfiles<-lapply(opfilepath, read.csv)
opdf<-do.call(rbind.data.frame, opfiles)
write.csv(opdf,"./projects/output/combined/combinedopportunitysalesteampartyin.csv")
```